Special finiteness	(§4) & _	log termina	l models (\$5)
Recult: T: X-	v U.	projective	
		n = dim×	
Thm An Existen	in in	pl flips	
F: X -> 2 pl	- Coipping	GM f	(X,D) pl+
K, + A Flipping	y contracti	ion S=	= [4]
-S is F-0	mphe,	then st.	$x' \rightarrow 2$
	•	exist	I
Thm Bn Special	finitenes	5	
$(X, \Delta_{B} = S + A + B)$	4l +	A amp	e, B, 70
$\bigvee \subseteq W D_{i \vee p}(x)$		$L\Delta_0 J =$	S
F.d .		inte,	grad
$\int_{-\infty}^{\infty} (v) = \frac{1}{2} \Delta^{-1}$	Sta +B	s. t. S	Six Some tim
>+A ((is (کر ×) محظ	le /	suppose ponly contract
Then there or	e finit	tely man	y lir myg
Ø.: X> X.	s.t.	For Δ	$\epsilon R_{SH}(V)$
& any WLCM	(χ_{u}, Δ)	that	Desit
contract S Ø:X- to Ø; in a N	>Y' +b	en \$ is	is norphic

$$\frac{Thm C_{n}}{K_{x}} e_{xistonce} = e_{xistonce} e_{xist$$

Recognition principle for WLCM/LJM: Ø: X---> Y i) bir contraction $F(w') = 2 \Gamma = \phi_* \Delta$ 3) Ky+ P Nef $S^{*}(K_{x}+\Delta) - S^{*}(K_{y}+\Gamma)$ effective exception $\longrightarrow (Y,\Gamma)$ is a $WLCH(Y_{u}, \Delta)$ Special finiteness $\frac{Thm}{E_{n-1}} = B_n$ PF: Suppose not, then 3 \$. X-->Y. $\& \Delta \in \mathcal{L}_{S+A}(V) \quad \text{s.t.} \not \Rightarrow_{i} \quad \text{is}$ WLCM(X/U, Di) & doesn't contract S + div EC ; f $S_i = + \operatorname{Constarm} of S$ $S_i = + \operatorname{Constarm} of S$ $S_i = + \operatorname{Constarm} of S$ $S_i = + \operatorname{Constarm} of S$ 514. . |>0 in a noted of Si 104

Lemma 4.1 (X, SHA +B=D) Roy smooth [0] = S A ample B70 $\textcircled{P} = (\Delta - 5) \bigcup_{5}$ (S, @) terminal $(-A)_{S}$ doesn't contract S, is a p: X---> Y WLCM($Y_{U, \Delta}$) induced map $T = \beta [s : S - - T]$ then the is a WLCM(S/u, E) for a E satisfing $\mathcal{K}_{\star} = \mathcal{F} (K_{\chi} + \Gamma) |_{\Gamma} = K_{\Gamma} + \mathcal{F}$ where \mathcal{F} (x, a) pl+ \Rightarrow (y, r) pl+ \Rightarrow (T, T) b+ $F = K_{w} + \Delta' = \rho^{*}(K_{x} + \Delta) + E$ $F = K_{w} + \Delta' = \rho^{*}(K_{x} + \Delta) + E$ $K_{w} + \Delta' = \rho^{*}(K_{y} + \Gamma) + F$ $K_{a} + \Theta' = F^{*}(K_{z} + \Theta) + E'$ $K_{a} + \Theta' = F^{*}(K_{z} + \Theta) + E'$ $K_{w} + \Delta' = \rho^{*}(K_{x} + \Delta) + E$ (S,E) terminal $K_{J} + \Gamma' = \varphi^{*} (K_{Y} + \Gamma) + F$ $K_{Q} + \gamma' = G^{*}(K_{T} + \gamma) + F$ F>E r'= d' =) ~ doesn't extract divisors F'>E' 7' 5 0' $\Xi \leq \Theta$ maximal divisor s.t. $\tau_{\star} \widehat{c} = \psi$, check via recognition priniple

$$\begin{aligned} \mathbf{F}^{\mathbf{x}} \left(\mathbf{K}_{s} + \mathbf{G} \right) &= \mathbf{g}^{\mathbf{x}} (\mathbf{K}_{T} + \mathbf{f}) + \mathbf{L} \\ \text{need that } \mathbf{L} &= \mathbf{e} \mathbf{F} \quad \text{exco ptimed } \mathbf{g} \\ \hline \mathbf{Lemma 4.3} \left(\mathbf{X}_{s}, \mathbf{\delta}_{i} \right) \quad plt \quad \mathbf{S} = \mathbf{L} \mathbf{\delta}_{i} \mathbf{J} \\ \mathbf{g}_{i} : \mathbf{X} \dots \mathbf{f}_{i} \quad \mathbf{Q} - \mathbf{f}_{act} \quad anple \quad nodels \\ \mathbf{o}^{\mathbf{F}} \quad \mathbf{K}_{s} + \mathbf{\delta}_{i} \\ \mathbf{g}_{i} \quad \mathbf{d}_{act} \quad \mathbf{c}_{act} \quad \mathbf{S} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{S} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{i} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} : \mathbf{f}_{i} \dots \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} = \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} = \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} \in \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} = \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{i} \in \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} \\ \mathbf{g}_{i} \mid_{s} = \mathbf{f}_{s} \\ \mathbf{g}_{i} \mid_{s} \\ \mathbf{g}_{i} \mid_{s}$$

moreover,
$$\lambda_{1}$$
, λ_{2} ... $\in E_{0}$, D
s.t. g_{1}^{L} : χ ... χ_{i} is $WLCH(\chi_{i}, \Delta + \lambda_{i}c)$
apply special finiteness
 \implies Finitely many ϕ_{i} in a
nbhd of S
 $t \in \Longrightarrow$ \Im_{i} is in a nbhd. \Im
Lemma S.2 Assume $A_{n} + B_{n_{1}}$ ($\chi, \Delta + c$)
Suppose that \Im D as before
 t det
supported on Supp(S)
c.t.
(t) $K_{\chi} + \Delta \sim R$, $D + dC$ $d \ge D$
 $+ K_{\chi} + \Delta + C$ is nef, then
 \Im a log terminal model
 $g_{i}: \chi \dots \gg Y$ or $B_{+}(\varphi_{i} A/u)$ doesn's certain
 MR MR MR MR MR MR MR MR

wrt A, D b) if every component of D is either Semiample or contained in $B(K_x + 4_u)$ then this nice model is on LTM. $\frac{PF}{D} = D_1 + D_2$ $D \leq L\Delta$ if $D_2 = 0$, then D₂ shares no comp w/ LAJ it follows from Lenna 5.2 with LOJ = S Induct on the components of D2 $c = lct(X, \Delta; D_3) > 0$ $D + cD_2 \qquad (D = \Delta + cD_2)$ $k_{\chi} + \Theta \sim_{R, Y} D + cD_2$ [D] has more components & D+cD, has less Components Not contained in LEY

Fesolve
$$F: Y \rightarrow X$$
 which Neolves
base loci of each component of
 M + Lemma 3.6.11 (prefin talk I)
 $2 \overline{\Psi}$ on Y s.t. $LTM(Y_{U}, \overline{\Psi})$
 $k_{Y} + \overline{\Psi} \sim N + 6 \notin S B(k_{Y} \cdot \overline{\Psi}_{U}) LTM(X_{U}, \Delta)$
 $k \overline{\Psi} + N + 6$ normal crossings
by key lemma 5.4 + 5.5 $LTM(Y_{U}, \overline{\Psi})$
exists \overline{W}